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SUMMARY

As current research illuminates the dynamic interplay between the innate and acquired immune

responses, the interaction and communication between these two arms has yet to be fully

investigated. Polymorphonuclear neutrophils (PMNs) and interferon-c (IFN-c) are known

critical components of innate and acquired immunity, respectively. However, recent studies have

demonstrated that these two components are not entirely isolated. Treatment of PMNs with

IFN-c elicits a variety of responses depending on stimuli and environmental conditions. These

responses include increased oxidative burst, differential gene expression, and induction of

antigen presentation. Many of these functions have been overlooked in PMNs, which have long

been classified as terminal phagocytic cells incapable of protein synthesis. As this review reports,

the old definition of the PMN is in need of an update, as these cells have demonstrated their

ability to mediate the transition between the innate and acquired immune responses.
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INTRODUCTION

Although the interferons were first identified and named for
their potent ability to interfere with and inhibit viral
infections, it soon became apparent that they could

be divided into two categories. Type I interferons, consist-
ing of interferon a and b, have antiviral activity as a
primary function. Type II interferon, consisting solely of

interferon-c (IFN-c), has a multitude of immunoregulatory
functions in addition to its antiviral effect.1 Since its dis-
covery, IFN-c has been shown to be one of the most potent
and pleiotrophic cytokines.

Investigations into the functions of IFN-c have classically
focused on the interactions of macrophages and CD4+ T
cells. The interaction of a T-cell receptor with an antigen

bound to a major histocompatibility complex (MHC)
molecule triggers production of IFN-c by T cells. This IFN-c
then acts to activate macrophages, up-regulating a number

of gene products and rendering macrophages additionally
cytotoxic by increasing oxidative burst and the production
of other oxidants such as nitric oxide. Recently, IFN-c was
shown to be produced by a number of other immune cell

types, including natural killer cells (NK) and macrophages;
and to regulate the functions of many of these cell types.

The majority of IFN-c research has focused on IFN-c’s
interactions with T cells, NK cells, and activated macro-
phages; all components of the secondary, acquired
response. Research into the primary response, consisting

primarily of polymorphonuclear neutrophils and other
components of innate immunity, has overlooked the signi-
ficance IFN-c. This oversight is unfortunate, as IFN-c has

been shown to be a potent and critical modulator of the
innate immune response.

This review will focus on the interactions of IFN-c
and the PMN. This type of interaction between innate and
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acquired immunity has been overlooked, in part caused by
‘the obsolete concept of the neutrophil as a ‘‘terminally
differentiated, short-lived, cell devoid of transcriptional
activities’’ found in most biomedical textbooks’.2 As will be

demonstrated, PMNs are active, dynamic cells that respond
to immunomodulators such as IFN-c through complex
changes in gene expression. This review will explore what is

known of gene expression and regulation in response to
IFN-c at a molecular level as well as IFN-c’s effects on the
traditional PMN functions of oxidative burst, phagocyto-

sis, and chemotaxis. This discussion should lead to an
improved understanding of the roles of both the PMN and
IFN-c in the innate immune response.

INTERFERON-c STIMULATED SIGNAL

TRANSDUCTION

The primary way in which IFN-c acts as an immunomodu-

lator is through regulation of gene expression. The signal
transduction pathways leading from binding of IFN-c and its
receptor to subsequent activation of gene transcription has

been well studied in cell types other than PMNs. These
studies have established that the primary method of IFN-c
signal transduction is via a Jak-Stat tyrosine kinase

dependent pathway. In this pathway, IFN-c binding to the
receptor triggers the phosphorylation and activation of Jak1,
a tyrosine kinase, which then activates signal transducer and
activator of transcription 1 (Stat1). Stat1 then forms func-

tionally active homodimers that move into the nucleus and
bind to specific DNA sequences.3 New research in non-PMN
cell types has indicated that IFN-c has the ability to activate

other signalling pathways as well. These other pathways,
such as those involving mitogen-activated protein kinases
(Map kinases), and are now being investigated.3

Only recently have the signalling pathways of IFN-c in
PMNs been investigated. Studies have found that resting
PMNs express approximately 1000 receptor molecules that

can rapidly and stably bind the IFN-c molecule. After
binding, many of these receptors are internalized leading to
a subsequent drop in receptor sites on the surface.4,5 Most
studies into IFN-c signalling pathways in PMNs have used

the Fc receptor I (FccRI) gene as a reporter system. The
promoter region of the gene encoding FccRI has been
shown to contain an interferon-c response region, to which

IFN-c-activated transcription factors bound. Using this
reporter system, IFN-c stimulated gene expression in
PMNs was demonstrated to utilize the traditional Jak-Stat

pathway through the activation of Stat1Æ6 However, this
same pathway has also been shown in PMNs to activate
Stat3, which is not usually observed in IFN-c signalling in

other cell types.7

McDonald et al. recently compared the signal trans-
duction pathways of a number of pro-inflammatory
cytokines during their activation of FccRI gene expression

in PMNs. This study revealed that these pro-inflammatory
cytokines used different transduction pathways to activate
expression of the same gene. IFN-c was shown to use

the traditional Jak-Stat1 pathway, while granulocyte–
monocyte colony-stimulating factor (GM-CSF) activated

Stat5 activity. Tumour necrosis factor-a (TNF-a) and
lipopolysaccharide (LPS) were both shown to activate
nuclear factor jB (NFjB).8 While IFN-c utilized a pathway
common to a number of cell types, the signalling pathway

of GM-CSF through Stat5 had not been previously
observed. Therefore, these data indicate that the combi-
nation of one cytokine with a specific cell type can result in

a unique pattern of gene expression that is triggered by the
signal transduction pathway used.

Signalling pathways that utilize Ca2+ flux have recently

been shown to be activated in IFN-c treated PMNs. Simple
treatment of PMNs with IFN-c for short periods elicited a
modest Ca2+ signal, and triggered increased sequestration

of Ca2+ into intracellular compartments.9,10 This initial
response is thought to be involved in the priming of PMNs
for a subsequent response. The increased Ca2+ sequestra-
tion was shown to prime cellular sensitivity to stimuli,

allowing for a subsequent enhancement the next time that
signalling pathway is used.10 This modest initial signal has
also been shown to be enhanced when IFN-c treatment is

coupled with other stimuli, such as the binding of fibro-
nectin to PMNs.11 Fibronectin, an extracellular matrix
protein, would most likely bind to PMNs as they extra-

vasate into the tissues, where full PMN activity would be
warranted. These data indicate that IFN-c may act via a
number of signalling pathways to prepare PMNs for
subsequent functions and to initiate them.

IFN-c signalling in PMNs has been shown to use an
unusual variety of signalling cascades. Single treatment of
these cells with IFN-c demonstrated that a G-protein

dependent pathway was used to elicit Ca2+ flux12 as in-
creased levels of inositol triphosphate were observed.13

However, tyrosine-kinase dependent mechanisms may also

be involved, as treatment with genstein, a tyrosine kinase
inhibitor, was shown to inhibit Ca2+ flux.12 Increased
protein kinase C activity occurred during this Ca2+ flux14

and costimulation with IFN-c and fibronectin resulted in
the activation of sphingosine kinases.11 Sphingosine kinases
have not been observed to be activated by IFN-c in other
cell types. Thus, further research into signalling in this cell

type is needed to resolve these preliminary findings.

INTERFERON-c REGULATION OF GENE

EXPRESSION

Historically, PMNs have not been considered capable of
responding to stimuli via gene expression and protein

synthesis. It was thought that PMNs reacted entirely via the
secretion of preformed proteins contained within the
cytoplasm and granules at the time of cell migration from

the bone marrow into the blood stream. This persistent idea
has been disproved repeatedly by research on PMNs.
Studies into the PMN response to IFN-c demonstrate a
range of gene products whose expression is modulated by

signals sensed in the environment. Table 1 lists the gene
products that have been demonstrated to have their
expression regulated when PMNs respond to IFN-c. Most

of the genes whose regulation was explored are functionally
tied to the immune system. Many of these genes are
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cytokines or chemokines, indicating that PMNs may play a
critical role in signalling and directing other components of
the immune response. This list of genes is currently quite
limited, as most of these studies occurred prior to global

gene expression technology. Recently, gene expression in
LPS-treated neutrophils was more fully explored via
microarray analysis. These data indicate that in addition to

a number of cytokine and oxidative burst-related genes,
other genes related to cell growth, cytoskeletal rearrange-
ment, and metabolism are also differentially regulated

during the response to LPS.15 Hopefully, as more studies of
this kind are performed, the idea of PMNs as cells with a
limited functionality will be replaced with the more accu-

rate view that these cells are crucial to signalling and
directing a dynamic immune response.

MHC II EXPRESSION

One of the most unlikely gene products to be induced by
IFN-c in PMNs is MHC II. PMNs have traditionally been
considered to be cells solely involved in innate immunity,

with no function in antigen presentation or T-cell activa-
tion. In vitro experiments with PMNs may be casting doubt
on this assumption, as a number of investigators have now
reported that PMNs express MHC II on the cell surface

when stimulated with IFN-c or other pro-inflammatory
stimuli, such as GM-CSF.16–18 CD80 and CD86, costimu-
latory molecules required for T-cell activation, have also

been shown to be up-regulated under the same conditions
as induce MHC II expression.18,19 These expressed MHC II
molecules have even been shown to be at least partly

functional, as the PMNs have been demonstrated to act as
required accessory cells during T-cell activation with
staphylococcal enterotoxin, a superantigen that does not

require intracellular processing prior to presentation.17

MHC II-expressing PMNs have also been shown to pro-
duce interleukin (IL)-8 when stimulated with this same
superantigen.20 The ability to fully process and present

more fully processed antigens, such as tetanus toxoid,
remains controversial. Fanger et al. in a side-by-side com-
parison of superantigen and tetanus toxoid, found the

MHC II-expressing PMNs were only able to effectively
present superantigen, and not tetanus toxoid.17 However,
Radsak et al. in a later study, were able to induce a low but

statistically significant level of activated T cells in response
to MHC II-expressing PMNs and tetanus toxoid.18 One
explanation for these conflicting results could be a result of
genetic polymorphisms in the human population. Reinisch

et al. in a study of 55 human subjects, found that only 51%
had PMNs that would express MHCII when stimulated.21

This donor-dependence is one possible explanation for the

discrepancy in results seen with regard to antigen presen-
tation studies. Regardless, these studies indicate that the
idea of PMNs being terminally differentiated cells may need

to be reinvestigated as these data indicate an ability to
induce previously unknown cell functions.

Further studies of surface marker expression present

additional evidence for the ability of PMNs to differentiate
after leaving the bone marrow. CD83, a traditional dend-
ritic cell marker, was shown to be expressed on the surface
of PMNs stimulated with IFN-c.22 Further studies of these

cells stimulated in vitro have shown that they had altered
morphology, lost traditional PMN chemotactic responses,
and presented antigen via MHC II; yet maintained

phagocytic and oxidative burst capabilities.23 A survey of
patients with acute bacterial infections found that over half
of the patients tested had circulating PMNs expressing

CD83.19 These data indicate that this phenomenon was not
simply the result of unlikely in vitro cytokine cocktails, but
demonstrated a new functionality for PMNs that should be
further explored.

CYTOKINE AND CHEMOKINE EXPRESSION

Neutrophils are usually the first cell type of the immune

system to arrive at a site of infection. As such, these cells are
critical components of both inflammatory and antimicro-
bial processes. Both of these processes are tightly regulated

through the production of specific cytokines. As the
non-phagocytic functions of PMNs have been more fully

Table 1. Gene products induced, up- or down-regulated by IFN-c
in PMNs

Gene product Function Reference

Gene products induced or up-regulated by PMNs

BLyS B Lymphocyte stimulator 34

C3b Complement receptor 42,48

CCL20 Dendritic chemotactic factor 119

CCR1 Chemokine receptor 44

CCR3 Chemokine receptor 44

CCR6 Chemokine receptor 22

CD11a b2 Integrin ⁄Adhesion 43

CD11b b2 Integrin ⁄Adhesion 42

CD14 LPS binding 46,47

CD18 b2 Integrin ⁄Adhesion 42,43

CD69 Activation marker 49

CD80 Antigen presentation 18,19,23

CD83 Dendritic cell marker 19,22,23

CD86 Antigen presentation 18,19,23

gp91-phox NADPH oxidase subunit 70

FccRI Antibody Fc receptor 71

FccRIII Antibody Fc Receptor 120

IL-1b Pro-inflammatory cytokine 27

IL-1Ra IL-1 receptor antagonist 121

IL-6 Anti-inflammatory cytokine 33

IP-10 IFN-c inducible protein ⁄chemokine 31,32

I-TAC T cell chemoattractant 31

MIG IFN-c induced monokine 31

MHC II Antigen presentation 16–20,23

PAF-acether Platelet activating factor 122

TNF-a Pro-inflammatory cytokine 27

Gene products down-regulated by IFN-c in PMNs
CXCR4 Chemokine receptor 45

GROa Chemokine ⁄human KC 30

IL-8 Neutrophil chemotactic factor 25,26,28

MIP-1a Macrophage inflammatory protein 28

MIP-1b Macrophage inflammatory protein 28

P47-phox NADPH oxidase subunit 70,71
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explored, the crucial ability of PMNs to secrete cytokines
and chemokines has been demonstrated clearly. The array
of cytokines and chemokines that PMNs are capable of
producing has been reviewed by Cassatella.24

The subsets of cytokines and chemokines whose
expression in PMNs is modulated by IFN-c is shown in
Table 1. It is interesting to note that IFN-c treatment of

PMNs has been shown to down-regulate IL-8.25,26 IL-8 is a
potent chemoattractant of PMNs, indicating that IFN-c
may act as a signal to halt PMN recruitment and infiltra-

tion. However, this down-regulation of IL-8 was correlated
with an up-regulation of the pro-inflammatory cytokines
TNF-a and IL-1b. In vitro experiments have shown that

PMNs incubated with IFN-c demonstrate a transient down-
regulation of IL-8 for the first few hours of incubation.
Extended incubation of PMNs with IFN-c leads to pro-
duction of TNF-a and IL-1b. This new cytokine milieu then

acts in an autocrine manner to override the signal from
IFN-c and reactivate IL-8 synthesis.27 A similar pattern of
changes in the cytokine network resulting in reactivated

gene expression by PMNs was observed with macrophage
inflammatory protein (MIP)-1a and MIP-1b expression.28

Given these observations, it appears that PMN responses

may change over time as the cytokine milieu changes, and
that cytokine production by PMNs may act as much on
themselves as on other cells and cell types.

Many of the other signalling molecules produced by

IFN-c-stimulated PMNs are chemokines. It should be
noted that IFN-c appears to down-regulate those chemo-
kines that recruit neutrophils, and up-regulate chemo-

kines that are chemoattractants for components of the
acquired immune response, specifically T cells. PMN-
derived MIP-1a, MIP-1b, and human growth-regulated

oncogene (GRO-a) ⁄murine keratinocyte-derived chemo-
kine were shown to be down-regulated by IFN-c treat-
ment.28–30 These three chemokines all recruit phagocytic

cells such as neutrophils and macrophages. Up-regulated
chemokines include IFN-c inducible protein 10 (IP-10),
monokine induced by IFN-c (MIG), and IFN-inducible
T cell a chemoattractant (I-TAC),31,32 all specific for acti-

vated T cells. Additionally, IL-6, a molecule thought to be
involved in the transition from an innate to an acqu-
ired response, and B lymphocyte stimulator (BLyS), a pro-

B-cell factor, have also been shown to be up-regulated.33,34

These data all indicate that IFN-c stimulates PMNs to
signal other components of the immune system.

IFN-c has typically been considered to be secreted by
and to act on components of the acquire immune system,
such as macrophages or T cells. As this review demon-
strates, the actions of this potent cytokine are not limited to

these cell types but can have dramatic effects on PMNs.
Recent research indicated that PMNs may be an important
source of this cytokine. In vitro experiments demonstrated

that human PMNs stimulated with a combination of LPS,
IL-12, and TNF-a secrete low levels of IFN-c.35 Peritoneal
murine PMNs have also been shown to express IFN-c
mRNA in vitro after stimulation with LPS.36 In vivo
experiments have revealed that PMNs secrete IFN-c
in response to a variety of infectious agents including

Nocardia asteroides,37 Salmonella typhimurium,38 Leishma-
nia major39,40 and Plasmodium berhei.41 During pulmonary
infection with Nocardia asteroides, PMNs were found to be
the sole source of IFN-c during the course of infection37

and this response depended on both the viability and
growth stage of the organism (unpublished observations).
PMN-derived IFN-c was also found to be required for

macrophage control of leishmanial growth and for stimu-
lation of CD4+ T cell migration and cytokine production.
In this system, IFN-c production involved PMN binding of

macrophage surface CD28, a molecule usually thought to
be involved in T-cell stimulation.40 Further investigations
into the role of PMNs as modulators of the immune

response are needed to elucidate the frequency of a PMN
IFN-c response and the importance of PMNs as sources of
this powerful cytokine.

OTHER SURFACE MARKERS

In addition to the surface markers already discussed, IFN-c
regulates the expression of a number of other receptors

and integrins on the PMN cell surface. Many of those
up-regulated are related to PMN adherence and extrava-
sion, such as the integrins CD11a, CD11b and CD18.42,43

Chemokine receptors CCR1, CCR3 and CCR6 are also
up-regulated22,44 while CXCR4 is down-regulated45 indi-
cating that IFN-c may be coupled with other signalling
molecules to co-ordinate specific recruitment of cells to the

site of infection. Other markers whose expression is
enhanced indicate that IFN-c usually acts as an activating
agent for PMNs. These molecules include CD14, the pri-

mary binding site for bacterial LPS46,47 and the comple-
ment component C3b.48 Recently, IFN-c treatment was
shown to induce CD69 expression on PMNs.49 CD69 is

known as an early activation marker for B and T cells.
These data suggest that CD69 can be used as a more gen-
eral marker of activation. Expression of CD69 was

observed to correlate with PMN production of IFN-c
(unpublished observations). Interestingly, IFN-c acts to
down-regulate the expression of the IFN-c receptor on the
surface of PMNs.4,5 Given the demonstrated time-

dependent nature of the response of PMNs to IFN-c, this
may be a regulatory mechanism used to prevent PMNs
from causing damage during the resolution of infection and

inflammation.

PRIMING OF NEUTROPHIL FUNCTIONS

BY IFN-c

While recent investigations demonstrated signal transduc-
tion and gene expression in IFN-c-treated PMNs, most

studies have focused on PMN function at a cellular level.
Specifically, these studies targeted IFN-c’s action as a pri-
ming agent. The term ‘priming’ refers to a stimulus that
prepares PMNs for enhanced activity upon secondary

stimulation. A variety of traditional PMN functions may be
primed, including increased oxidative metabolism, surface
receptor expression, degranulation and other functions

associated with traditional PMN activities.50 The priming
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effect of IFN-c on PMNs include, but is not limited to,
these traditional PMN functions. A number of other cyto-
kines have also been shown to act as priming agents for
PMNs, including TNF-a and IL-8.51 However, these

responses were demonstrated to vary with both the cyto-
kine and the second stimulus involved. A full investigation
into the combinatorial effects of priming agent and stimulus

could uncover the methods of this finely tuned control of
the PMN response.

OXIDATIVE BURST

Traditionally, the oxidative burst, or production of reactive
oxygen species, has been considered to be a PMN’s primary

and most important function. With the aim of destroying
the foreign invaders, PMNs infiltrate a site of inflammation
or infection where they are stimulated to release reactive
oxygen species. Hydrogen peroxide (H2O2) and superoxide

(O2
–) are the primary reactive oxygen species produced

during oxidative burst. These species can react with other
chemical components to create reactive halides, hydroxyl

radicals (OH–), and singlet oxygen.52,53 The release of these
reactive and toxic compounds results in damage to the
targeted cell or object, and often results in irreparable

damage and death to the PMN itself.
A multitude of signals, both foreign and host cell deri-

ved, have been demonstrated to stimulate oxygen meta-
bolism and oxidative burst. While not considered a

traditional PMN activator, IFN-c has been demonstrated to
enhance, or prime, increased reactive oxygen species pro-
duction in combination with a secondary stimulus.54,55 Ber-

ton et al. were the first to observe the priming effect of IFN-c
on PMN oxidative burst. When pretreated with IFN-c,
PMNs stimulated with either f-methionine-leucine-phenylal-

anine (fMLP), concanavalin A (Con A), or LPS demon-
strated increased O2 consumption and O2

– production.56 A
number of later studies confirmed these observations, docu-

menting increased H2O2 production, O2
– production, and

increased reducing power in response to a variety of chemical
stimuli including fMLP, Con A, LPS, and zymosan.42,57–62

Interestingly, IFN-c did not enhance the PMN response to

the stimulus phorbol 12-myristate acetate, which stimulates
cells without the use of a surface membrane receptor.57,63,64

These results indicated that the IFN-c priming effect may be

specific to stimuli that act via membrane associated
receptors. The IFN-c priming response was demonstrated in
a number of species including humans,56 cows,62 mice65 and

rats.66

The IFN-c priming effect was found to be dose and time
dependent. Doses as low as 2 U ⁄ml enhanced production

while doses ranging from 50 to 1000 U ⁄ml elicited an
optimal response, dependent on the incubation period.58,64

While preincubation of PMNs with IFN-c for a period as
short as 10 min was shown to enhance oxidative burst60,67

incubation for an hour or longer was shown to have a
maximal effect on oxidative burst.56,68 Incubation of IFN-c-
treated PMNs with protein synthesis inhibitors such as

cyclohexamide (an inhibitor of translation), or actinomycin
D (an inhibitor of RNA synthesis), inhibited oxidative

burst. These results indicate that the enhancement of
oxidative burst by PMNs is dependent on new protein
synthesis.56,58,64

The primary enzyme involved in the production of

reactive oxygen species is reduced nicotinamide adenine
dinucleotide phosphate (NADPH) oxidase. NADPH oxid-
ase is a multiunit enzyme complex that fully assembles upon

cellular stimulation to catalyze the formation of superoxide
anion. The main regulated subunit of NADPH oxidase is
the membrane protein gp91-phox.55 Mutations in this gene

were correlated with chronic granulomatous disease.55

IFN-c treatment was demonstrated to up regulate the
expression of the gp91-phox subunit in a protein synthesis

dependent manner.69,70 However, the p47-phox subunit,
which is constitutively expressed in resting PMNs, was
shown to be down-regulated by IFN-c exposure.71 While
the regulation of these subunits remains a complex process

that is not fully understood, the end result of IFN-c treat-
ment has been clearly demonstrated to be priming of the
oxidative response.

NITRIC OXIDE PRODUCTION

The production of nitric oxide (NO) during the oxidative

burst of PMNs has been a subject of some debate. Inducible
nitric oxide synthase (iNOS), the enzyme involved, had only
recently been observed to be expressed by PMNs of any
species. Inducible nitric oxide synthase expression and NO

production were shown to be induced by IFN-c. McCall
et al. first observed that iNOS expression in rat PMNs
was enhanced in a cyclohexamide-dependent manner

by IFN-c.72 This observation has since been extended to
human PMNs, with the demonstration that iNOS expres-
sion is IFN-c dose dependent73 and that the gene product

colocalizes with myeloperoxidase in the primary granules.74

This colocalization suggests that iNOS is directly involved
with the enhanced oxidative burst and cytotoxicity of

IFN-c treated PMNs, as myeloperoxidase catalyses the
reaction of H2O2 into more toxic intermediates. This
colocalization of these two enzymes may result in enhanced
reaction of H2O2 with NO to form the highly reactive and

toxic peroxynitrite (ONOO–) molecule.

PHAGOCYTOSIS AND CYTOCIDAL EFFECTS

Treatment of PMNs with IFN-c was demonstrated to have
significant effects on the functions of phagocytosis and cell
killing. Short-term treatment of PMNs with IFN-c
(20–30 min) was shown by Shalaby et al. to increase the
phagocytosis of latex beads75 and other studies demon-
strated increased phagocytosis of Plasmodium falciparum

merozoites induced by IFN-c treatment.76 Studies with
IFN-c knockout mice have also demonstrated that PMNs
from these mice exhibit a twofold reduction in phagocyto-
sis. Because the primary function of PMNs is to damage

and destroy foreign microbes, numerous studies have
investigated how IFN-c treatments modulate this ability.
IFN-c has been shown to be a potent stimulator of cyto-

cidal activity, as shown in Table 2.
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The effect of IFN-c on the PMN response to a variety of
fungi has been thoroughly investigated. In general these
studies found some form of enhanced anti-fungal activity
from PMNs treated with IFN-c. Studies of the PMN

response to Candida revealed an IFN-c dose dependent
inhibition of growth, hyphal damage, or hyphal killing with
both human peripheral blood and mouse peritoneal

PMNs.65,77–80 Studies with Blastomyces dermatitidis have
shown an enhanced oxidative burst within the first 6 hr
post-treatment with IFN-c that changed the effect of PMN

attack from fungistatic to fungicidal.81–83 This shift from a
fungistatic to a fungicidal effect with IFN-c treatment was
further demonstrated with Penicillium marneffei84 and

Paracoccidioides brasiliensis.85–87 Increased oxidative burst
was also observed in response to Aspergillus fumigatus. This
IFN-c triggered response was shown to be to be dependent
on new transcription and protein synthesis.88

IFN-c has also been demonstrated to enhance the bac-
tericidal activity of PMNs towards a variety of bacterial
species, including Brucella abortus, Legionellla pneumo-

phila, Enterococcus faecalis and Mycobacterium fortui-
tum.89–92 However, not all species investigated used
oxidative burst to enhance bactericidal activity. Responses

to Brucella abortus and Enterococcus were demonstrated to
be the result of increased superoxide anion or hydrogen
peroxide secretion.90,92 However, the bactericidal response
to Mycobacterium fortuitum was observed to result from

nonoxidative mechanisms.91 This non-oxidative response
to Mycobacterium fortuitum coincided with an increased
time to killing (18 hr) as compared to those studies linked

to oxidative burst. The effect of IFN-c on PMN responses
to Mycobacterium tuberculosis has also been investigated,

with IFN-c being observed to inhibit the bactericidal
activity of PMNs.93 These data indicate that IFN-c-primed
responses to different bacterial species vary widely and may
be the result of PMN recognition of species-specific surface

molecules.
IFN-c-primed PMN killing of non-fungal eukaryotic

targets has also been observed. IFN-c treatment was shown

to enhance contact-dependent killing of Entamoeba histo-
lytica, with production of hydrogen peroxide shown to be
required.94 IFN-c-treated PMNs have also been demon-

strated to inhibit the growth of Plasmodium falciparum and
to kill the parasite via a phagocytic mechanism.95 IFN-c-
primed PMNs have also been shown to effect the killing of

tumour cells. Interestingly, the cytocidal effect of these
PMNs was found to be bimodal, with an initial (5 min
post incubation), trypsin-sensitive cytocidal mechanism,
followed after 180 min of IFN-c incubation by a second

cytocidal mechanism that is trypsin-insensitive.96 This two-
phase effect may be similar to or linked with to the bimodal
regulation of IL-8 expression described earlier. The chan-

ging stimulatory environment and cytokine milieu may
result in changes of PMN functions over time. These
studies of cellular killing mechanisms of IFN-c primed

PMNs suggest that PMNs exhibit multiple mechanisms of
killing elicited by differences in the target cell components.

FC RECEPTOR EXPRESSION AND

ANTIBODY-DEPENDENT CELLULAR

CYTOTOXICITY (ADCC)

ADCC was shown to be enhanced by IFN-c treatment of

PMNs. This effect was demonstrated in both human and
bovine cells to require a 2–4 hr incubation period with
IFN-c.75,97,98 However, ADCC did not require RNA or

protein synthesis. Using bovine PMNs, Steinbeck et al.
demonstrated that IFN-c enhanced ADCC of chicken
erythrocytes even in the presence of RNA and protein

synthesis inhibitors.99 Non-specific cell cytotoxicity, in
which IgG activated PMNs kill non-opsonized bystander
cells, was not affected by IFN-c treatment, although IgG
treatment stimulated increased production of superoxide

and hydrogen peroxide.100

Enhanced ADCC in IFN-c-primed PMNs was closely
correlated with expression of FccRI by the PMN.101 The

high affinity receptor for monomeric IgG1, FccRI (CD64),
is not found on the surface of resting PMNs. FccRII, the
receptor for polymeric IgG1 and IgG2, and FccRIII, both

low-affinity receptors for various forms of IgG, are
expressed constitutively at low levels on resting PMNs.102

Fc receptor I (FccRI), but not FccRII or FccRIII, was

shown to be induced in both human and bovine PMNs by
IFN-c treatment.101,103–105 This induction required an
extended exposure time to IFN-c, as treatments for less
than 1 hr have no effect on FccRI expression.106 Treatment

with 100 U ⁄ml IFN-c for 4–5 hr was shown by Hoffmeyer
et al. to induce an average 15 000 FccRI molecules on the
surface of each PMN107 with mRNA of FccRI induced by

IFN-c 1 hr post treatment.108 FccRI expression has been
correlated with increased ADCC,102,104,109 increased

Table 2. IFN-c treatment enhances PMN killing of the following

organisms

Organism Reference

Bacteria

Brucella abortus 90

Enterococcus faecalis 92

Legionella pneumophila 89

Mycobacterium fortuitum 91

Mycobacterium tuberculosis 93

Staphylococcus aureus 67

Fungi

Aspergillus fumigatus 88

Blastomyces dermatitidis 81–83

Candida albicans 59,65,77–80

Candida parasilosis 80

Candida tropicalis 80

Paracoccdioides brasiliensis 85–87

Pencilillium marneffi 84

Protozoa

Entamoeba histolytica 94

Plasmodium falciparum 95

Other

Gastric endothelial cells 63

Litomosoides sigmodontis (filaria worm) 123

Tumour cells 73,96,124
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microbicidal activity110 and increased oxidative burst via
the activation of NADPH oxidase.107 At the molecular
level, the binding of neutrophil FccRI to IgG1 was shown
to activate similar signal transduction pathways as seen on

monocytic cells, including Ca2+ flux, and required tyrosine
kinase activation.107 However, the expression of FccRI on
PMNs, unlike on monocytic cells was inhibited by the

immunosuppresant dexamethazone111 and was not affected
by inhibitors of Na+ ⁄H+ antiporters, as was observed in
monocytic cells.108 These data, like those seen during

investigations into Ca2+ flux signalling, indicate that
PMNs may use novel pathways of signalling to control gene
expression, and to elicit the appropriate response.

CHEMOTAXIS AND APOPTOSIS

IFN-c has never been demonstrated to have a chemotactic
effect on PMNs. In the human, bovine and murine systems,

IFN-c was found not to have a chemotactic effect on
PMNs, but rather inhibited both random and directed
migration.112–114 This suppression of cellular migration was

observed both in in vitro experiments and in vivo in the
mouse peritoneal cavity.113 Additionally, IFN-c suppressed
the chemotactic migration of PMNs toward fMLP. This

inhibitory effect was demonstrated to be independent of
protein synthesis or tyrosine kinase activity.114 In vitro,
IFN-c increased the rate of PMN adherence.115 These data
indicate that IFN-c may act as a signal of arrival to a site of

inflammation allowing for the accumulation of PMNs.
PMNs, as terminally differentiated cells, are short-lived

and readily undergo apoptosis, or programmed cell death.

Stimulation of PMNs with a number of activating sub-
stances, including IFN-c, has been shown to extend the life
span and functional activity of these effector cells. Colotta

et al. found that IFN-c treatment reduced the number of
PMNs with apoptotic morphology by 10-fold after 48 hr in
culture, and that the in vitro life span of PMNs could be

extended from 48 hr to beyond 96 hr via IFN-c treatment.116

This extension of the lifespan of PMNs has also been
observed in vivo in cells from bacterial sepsis patients.117

Suppression of apoptosis was also correlated with other

functions induced by IFN-c, such as FccRI expression and
enhanced oxidative burst.107,118 Similarly to what has been
reported in other cell types, suppression of apoptosis in

PMNs involved tyrosine-kinase dependent pathways.117

CONCLUSIONS

PMNs are the first cells to respond to an infection. As such
it is logical to think of these cells as evaluators of the scene
at hand, dynamically responding to the environmental

conditions and directing the subsequent response of other
immune cell types such as T cells, B cells, and macrophages.
Research on the non-phagocytic roles of PMNs has been
hampered by both the persistent belief that PMNs have a

limited range of functionality and difficulties in culturing
this cell type for in vitro experimentation. However, as
we understand better the crosstalk and integrated nature

of the innate and acquired immune responses, the

‘non-traditional’ role of PMNs to respond to stimuli via
gene expression and secretion may prove to be of critical
importance. Indeed, the data discussed in this review
demonstrate that this is the case, as IFN-c-induced gene

expression has been seen to be critical for enhanced ADCC
and effective cytotoxic mechanisms against a wide variety
of microbial pathogens. The production of IFN-c, and

other cytokines, by PMNs clearly illustrates the ability of
these cells to stimulate and direct an appropriate immune
response. Even though IFN-c and PMNs might seem an

unlikely combination, this review shows it is an important
and dynamic one.
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